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ANALOGUES OF THE KIRCHHOFF AND SOMIGLIANA FORMULAE 

IN TWO-DIMENSIONAL ELASTODYNAMIC PROBLEMS* 

L.A. ALEKSEYEVA 

The theory of generalized functions is used to derive unsteady-state 
equations of motion in elasticity theory taking into account possible 
discontinuities at the fronts of the solutions in infinite domains, and 
also for solutions in a bounded domain. By convolving Green's tensor 
with the right-hand side of these equatrons one obtains generalized- 
function analogues of the Kirchhoff, Somigliana and Gauss formulae. 
Integral analogues of these formulae are proposed for the case of two- 
dimensional deformation. 

1. Unsteady-state equations of motion in genemtized functions. We shall use the follow- 
ing notation: (z~,z~,zJ are Lagrangian Cartesian coordinates of a point x in a linearly 
elastic isotropic medium with given Lame parameters h, p and density p and Ui, EU, IQ are 
the Cartesian components of the displacements u and strain and stress tensors, respectively. 
These quantities obey the Cauchy relations and Hooke's law /1/: 

eij = O.5 (n&j + Uj,i)s $1 = hUk,k8[) + 2pEij 
(1.1) 

Throughout the paper, repeated indices indicate summation; unless otherwise stated, 
i, j = 1, . . ., N (in two-dimensional deformation 
@i,, = all&&, nt,* = au&Pt. 

N = 2 and in three-dimensional N = 3) and 

in view of (1.11, the equations of motion of a continuous medium 

%l,, + P(% = P%t* (I.21 
can be reduced to the form 

-%’ (a/ax, a/at) = (cl2 - cz2) @/h$z~ f 6( (c,zA - NW), c1 = 
(1.3) 

I/@ + W/P, c, = WXl 

where CI,C, are the velocities of dilatational waves and shear waves,6tf(6gj) is the Kronecker 
delta and Gt are the Cartesian components of the body force. 

It is well-known /2/ that system (1.3) is strictly hyperbolic. The determinant of its 
characteristic matrix 

@C (% iw,) = {(c*2 - c13 @,, - s,j (C$Z / % I* - o’)) 

f% = (El, . . .I Eivf. I % I = l&5) 

has 2N real roots counting multiplicities (when N = 3 there are six roots &t, rrt;cs* +c,; 
when iV = 2 there are four: _tc~,-&C~).The matrix {--Ltj (it, 0)) is positive definite when 
1% IfO. 

Hyperbolic systems are known to have discontinuous solutions. 
tinuity is a characteristic surface of system (1.3) and it moves in 
t. Let Fi be such a surface in AN and F "the same" surface but in 
00, where it is stationary; let P(x, t) =O be the equation of the 
a unit vector along the normal to F in RN+~: 

The surface of discon- 
the space RN with time 
RN+I=RNX~, --<t< 
surface, v = (Ye, . . ..YN) 



and n = (nl, n,, . ., no) the normal to Ft in RN: 

n, = F> i / II grad Ft II, 1) grad Ft II = v/F., j = 1, . ., N 

The surface F t propagates in RN at a velocity 

c = -F, t / II grad Ft II 

and its equation is 

det {(s” - cs*) vivj + 4, (, xg, vk2 - .ta)) = 0, VI = "Ntl 
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(1.5) 

(1.6) 

(1.7) 

Since the system is hyperbolic, Eq.(1.7) has roots 

Any characteristic 
moves at velocity CL. 

The condition that 

1=1,2 ('1.8) 

surface (wave front) satisfies one of these equations; by (1.6) it 

the displacements be continuous across the wave front, which is 
necessary to maintain the continuity of the medium, 

IUilP, = 0 (1.9) 

implies the well-known compatibility conditions for the solutions on the moving fronts /2/z 

IW, I + njui, flF, = 0 (1.10) 

(the continuity of the tangential derivatives of u on F,). Here [fla denotes the jump of f 
across Ft: 

t 

ht =:A: (f (X + En, t) - f (x - en, t)) 

for x E F,, E > 0; [nf]F, -5 n ]f]F ! 
In addition, Eqs.tl.3) imply dynamic compatibility conditions for the solutions on the 

fronts /2/: 
]ai,n, + peni, flFl = 0 (1.11) 

which are equivalent to the law of conservation of momentum in the vicinity of the front. 
In order to incorporate singular body forces in the equations of motion and construct 

fundamental solutions, the equations must be written in the space of generalized functions 
taking conditions (1.9)-(1.11) into account. The fundamental space DN(RN+J will be the 
y;T; $ compactly-supported ifinitely differentiable vector functions (p(x, t) = {cp, (x,t), . . . . 

defined on RN+* ((x, t)E RN+,). The corresponding dual space DN’ (RN+~) is the space 
of generalized vector functions f* (x, t) = (fl* (x, t), . ., fN* (x, t)). Throughout, instead of 
"vector function" we shall always say just "function". Convergence is defined by analogy 
with convergence in D (RN) = D, (RN), D’ (RN) = DI’ (RN) /3/. 

Let u (x, t) be any classical solution of Eq.tl.3) which is continuous and twice piece- 
wise differentiable everywhere except possibly at the surface (1.7), where conditions (1.9)- 
(1.11) are satisfied. Corresponding to u(x, t) we have a generalized function u* (x, t): 

tu** cp) = 1 4 (x9 t) ‘pi (x, t) au, VCP E DN (RN-+I) 
RNi-I 

(1.12) 

where the integral is evaluated over the space RN+,, or, more precisely, over part of it, 
since cp (x,t) has bounded support. The generalized stress and strain tensors 
defined by (l.l), 

ci,*, Q* are 
but now in the generalized sense, i.e., the generalized derivatives of ,,* 

are defined by the formula /3/ 

(u,j*Y cp) = - (u*, CPJ), i = 1, . . .,N + 1 (1.13) 

The characteristic function of the set F+=((x, t): F(x,t)>O} is defined as 

f, F(x, t)>o 
HF+ (x, t) = ‘/a, F (x, t) = 0 

0, F (x7 1) < 0 
(1.14) 
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the definitions of F_ and H,-: HP+ + Hr- = 1 are similar. 
It is well-known 131 that 

Hi, j = VjSF (X, t), Hi, j = ---v~~F (x, t) (1.15) 

Ut j == Ui. j f IUjlFvjBF (X3 t), (1.16) 

Here v&(x, t) is a simple layer on F: 

WF7 cp) = J vj (xv t) qj (x, t) as 
F 

(1.17), 

(the integral is evaluated over F). The first term on the right of (1.16) is the classical 
derivative of Ui. It follows from (1.15) and (1.16) that 

Eij* z F<j + 0,5 IUiVj + UjYi]&J? (1.18) 
o*,* Z ‘%j d- [hukv&6ij + p (U<%‘j + UjV$)ldF 

‘$a& = (iij~ L + ffiij%]F 68’ f & {[hlv& + p (a<Vj + ujvi)]F 65”) 
k 

Hence it follows that 

(1.19), 

By virtue of (1.2), (l-11), (1.9) and (1.6), the right-hand side of (1.19) vanishes. 
Consequently, U* satisfies the same equations, but now in the generalized sense. 

2. C;eneratized ~~~~ff-S~~g2~ formdae for the unsteady-state problem. Let S be 
the surface bounding the domain S- of definition in RN of a classical solution n (x, t) of 
Eqs.(l.3), and n the unit vector of the outward normal to S, which is continuous on S. Con- 
sider the generalized function u*(x,t) extended by defining it as zero in the complement 
s+ = R~ \ (s _t s-): u* (x, t) = u (x. 4 Hs- (x) H (t), where H(t) is the Heaviside function, Hs-(x) 
the characteristic function of s- in &. Both S and t = 0 are surfaces of discontinuity 
for this function. Differentiating u* as in Sect.1 taking into account the equality H'(t) = 

6 (43 we obtain 

PLij(alaxYa/at) uj+ = -Uaijnjss(x)H(t)-~((hu,nkgij + p(uinj + up,)j x 

6s 6) H(t)) - uio’Hs- (x) 6 (t) --iu& (x) 6’ (t) - G,* 

(2.1) 

Gi* = GiHs- (x) H (t) 

Here Hs- (x) 6 (t), H-s (x) 6‘ It) are simple and double layers on the base of the cylinder 
s- x T (T = {t: t>Dt) and &(x)H ft) is a simple layer on its lateral surface. Since u* =O. 
outside S- and at t<O, the jumps in Eq.(2.1) are replaced by the appropriate expressions 
on S; uic = ui (x,0), nio‘ = L%~ (x. oyat. 

Let U,,*(x,t) be a fundamental solution (Green's tensor) of Eq.gl.3) for a body force 
Gi* = Sin8 (x, I): 

Li' (d/8x, a/at) ujk* + 6,,6 (x, t) = 0 (2.2) 

Put pk = (7kjnj, for x E s. We shall use the property of the fundamental solutions: for 
any G* EL)~(R,,,+J the corresponding solution of (1.3) is a cOnVOhh.On with reSpeCt to (X,t): 

uj* = U,,* a Gk* (2.3), 

if it exists. In view of the differentiation property of convolutions, it fOllows from (2.1) 
and (2.3) that 
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The symbol x* indicates that the convolution is evaluated with respect to x only. 
This formula may be written in integral form, changing the notation for the dummy 

indices over which the summation of ~1 is performed: 

t 
Pi (xv 4 H @I = s d-c s tuis* (x - y, z) pk (y, t - T) + Uk (y, t - T) x 

(hUZ,i(x-Y,~)nk&)+SCm,(Y)(~~,i(x-Yy,t):+C':1,k(x-Y,r))))ds(Y)- 

j_(nkO(Y)u:h (x -Y, t)+ nkO(Y)%t tx --YT t))dv(Y) + 

(2.5). 

jdrj_&k* (x--Y! ')Gk*(Y- t- 'r)dv(Y) 

u;k,, (x - Y, r) = 8uik* (x - Y, ?)/&rj 

Defining the tensors 

Uik (X9 Yt t) = uik* (X - Y* t) 
SiJk (XT Y* I) = %JUlk, I + p (Uik. J + UJk, i) 

(2.6) 

rik (x, y, h n, = &JknJ, Tik cx, y, t, n) = rki (y, x, t, n) 

we can write formulae (2.5) in the traditional form, using the properties of Green's tensor: 

uij* cx - y* t) = uJi* (X - y, t) = uiJ* (y - X, i?) (2.7) 

whose properties follow from the isotropy of the medium, which implies that the equations of 
motion (2.2) must be invariant with respect to the group of orthogonal transformations, which 
of course includes the reflections. Thus, using (2.6) and (2.7), we obtain a formula of the 
same type as the Somigliana identity of static elasticity theory /I, 4/: 

Put (XT t) Hs- (X) H (t) = S dT S uik (xv yt T) pk (y, t - T) ds (Y) - 
0 8 

(2.8) 

Y, r)ak(Y,t-r)&(Y) -t 1 (&(Y)uik(x, YV t) + 
s- 

UkO(Y)Uik,t(X* Yl t))du(Y) + ($_Gk (Yy t --z) Uik(x,y, r)du(y) 

The specific form of this formula depends on the form of the tensors Ui,, Tit* Uik.1. AS all or 
some of these tensors are usually expressed in terms of singular generalized functions, 
formula (2.8) as it stands is formal, though it is frequently encountered in the literature 
/I/. A preferable notation is (2.4), in which the differentiation operation can be eliminated 
by using the properties of convolutions: 

Q’JPu~* = Pk8S tx) f1 (t)*Uik* + $ ((hulnlbkJf p (uknJ+ UJnk)) 68 (X) H (I)*UXI+ 
J 

u&IS-(X) X*& + 4 {Uko&- (X)X*&) + Gk*dl:k 

(2.9) 

Here, if Uik* is a regular generalized function, all the convolutions can be expressed 
as integrals, with the differentiation applied outside the integral signs. The resulting 
equations may thus be investigatedin the contextof continuous piecewisedifferentiablefunctionr 

3. A generalized Gauss formula for dynamic probtems. We shall now show that the tensor 

Tik (x, Y, t, n) is a fundamental solution of Eqs.fl.3). Fixing y in (2.6), we obtain 

-Tik (x, Y, t, n) = Klk (a/~%, n) Ui, (x. y, t) = 
{hnka/'rl + PnJ (6lka/azJ f 8lka/aZk)} ui, (X, y, t) 

(3.1) 

LJ’ (a/8X7 a/at) Tik (X, y, t, n) = KJk(a/aX, n) 6 (X - y, t) 

The last equation follows from (2.5), and we rewrite it as 

L,'(aiax, a/at) Ttk (x. y, t, 0) = h,asiaz, + pn, giJka6/a2, + tiJ,a8/a2,) (3.2) 
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By Eqs.fl.2) with y =0, 
Sijr,i - Puih,tt + f&6 fx7 0 =l_ O. 

Convolving (3.3) with Hs-(x)H(t) and using (1.151, we obtain 
13.3) 

Sifti, j*Hs-(x)H(t) = -- \ *njSS(X)H(t) = 
ijk 

- ,o&Hs- (x) H (t) + p -$ {U,,;*&-(x) ff (t)b 

We now use (2.6) and recast (3.4) in integral form: 

(-3.4) 

{ax ~Tik(Y,x~~~n(Y))~s(Y)=~~i~Hs-(x)H(t)-p~~ U~~(x,y,~)au(Y) 
D s- S- 

(3.5) 

Unlike the Gauss formula of static elasticity theory 141, this equation involves a second 
term on the right, representing time-dependence. 

4. The tensors Utk* arad T+k*. In two dimensions (N = 2) the tensor U,,* was 

constructed in /5/, but the development there involves an error (see below), because of which 
the resulting formula for uik* is incorrect. The tensor u{k* in three dimensions was 
worked out in /I/. The simple approach adopted here will be different. 

Evaluating the generalized Fourier transform of (2.2) and solving the equations thus 
obtained, we obtain the Fourier transform of Green's tensor: 

- 
where (El, . ...&, w) are the Fourier variables corresponding to (xI,...,z~,~) 1s j = t/E&. 
The generalized Fourier transform is defined by 

(F If* (x, 1)1, F IT (x, t)l) = (2n)N+* (t* (x, 2), cp k tx 

(F[qJ(x,t)l= 5 cp(x,t)exp(i(!$s) +iwt)du 
RN+1 

for any cp E DN (RN+,)). 
It is obvious that the function 

Q'. (6, 0, c) =: (c2 1 5 12 - ,q-’ 

is the Fourier transform of Green's function of the D'Alembert wave equation 

(cY%V - c2A) @, (x, t, c) = 6 (x, 1) 

whose solutions are readily available for any H /3/. The functions 

iit, = -&/(io), 5* = -5Jfiw) = @J(io)Z 

are the Fourier transforms of the convolutions 

iDI, = F t@,o * H (t) 6 (x)1, ii;;: = F IQ, * If (f) S (x)1 

if the regularization of the function ii(iO) is taken to be ll(i (0 io)), as 'D, 
t<o. Consequently, 

m,=~,*H(t)6(x)=H(t)S~~(+,r,c)dz 
0 

(D,-@,*H(t)G(x)=H(t)~@,(x,~,c)dr 
0 

Since 

we deduce from (4.1) 

F Mf*/C?z,1 = -i&F if*?. 

cii,* (x, t) = % (x~ t, '+)&k + @(c,'@, (x, t, C,) - Czzf& (X, t, Cq)) +$%&, 

and from (3.11, in view of (4.6), that 

cz 

(4.2) 

(4.3) 

(4.4) 

:O for 

(4.5) 

W-4 



Implementing the integration in (4.5), we find that 
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(4.7) 

(4.8) 

(4.9) 

Substituting (4.9) into (4.61, we obtain uJ&* in the two-dimensional case*: [*The 
evaluation of the functions analogous to our f,,fB, in f5j involved an error; in particular, 
P was omitted from the denominators of the expressions under the logarithm sign in formulae 
(4.3.155)-(4.3.155"). 

It follows from (4.10) that Ui,* is a regular generalized function, with integrable 
(in R3 )singularities of order (cJ~@ - rz)-” on two fronts Ki = ((x, t) E R,: r = cltf. The moving 
fronts Kti = {x E R,: r = Cjtf, which are circles of radius ctt, 'expand in & at a rate C+ 
Ahead of the front Kt* Uili* = 0. 

At r =0, t#O the tensor Vi, * has a removable singularity, as shown by the asymptotic 
formula 

It can be shown that 

aH (ct - r) 

a=1 
= - 9 S (ct - r) H (t) = - 2 6 (ct - r) H (t) 

(4.11) 

Here the right-hand side corresponds to a simple layer on the surface of a cone K = {(x, t): 
r = cf, t > 0): 

where the inner integral is evaluated along a circle of radius ct. It follows that the tensor 
Tir* is a singular generalized function, whose precise form may be determined by using (4.7). 

Three-dimensional deformation. When N =3 /3/ we have 

a’0 (x, t, c) = li cct ;n;r” ct) , r = jrxl” + xef + r,” 

Formulae (4.5) imply 

aJl(x,t,c)= ay!;r) I @*lx, t, c) = 
H (ct - r) (t - r/c) 

4x& 

(4.14) 

(4.15) 
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Substituting into (4.61, we find that 

Uik* (x, t) = t (4nr2)-’ (6 (czt - r) H (t) (hi, - ~,~r,~) + tr-’ (bik - 

3, ir, k) (H (c,t - r) - H (clt - r)) + 6 (c,t - r) H (t) r, ir, k} 
i, k = 1, 2, 3 

(4.16) 

Formula (4.16) was first derived by Stokes /l/, via direct inversion of the Fourier- 
Laplace transform of Ulk * . 

5. Integral anatogues of formula (2.8) for N = 2. We will first consider the problem 
with vanishing initial data and body forces: UIO = 0, UIO'= 0, CL= 0. 

When N=3 formula (2.8) cannot be used, since V,p is a singular generalized function 
with simple layers on the surfaces of the cones K$,K?. Its regular part, which includes 
H(G - r), is non-zero only between the fronts. When N= 2 the tensor T,j* (x, Y, t, a) involves 
non-integrable singularities of the form (r--c/f)>", r= /ix--YiI, so that here too formula (2.8) 
cannot be used to determine u,(x,t). We shall use formula (2.9) to construct an integral 
analogue in the case N= 2. 

Express Vir* as U,k* = UlR‘ + ~rkzr where O?kl are the terms which depend on c, in 
(4.10). lJ:kkl describes a volumetric deformation and T% a shear deformation. Similar 
decompositions hold for the tensors T&, U,r, T,k. Put 

Wikf (xv y, 0 = 1 Uik, (I, y, 7) dT (5.1) 
r/c, 

awimi 
Hikj (x. y, t* n) = hk 7 +w, aWikj awimi 

ay - + aYk * Hik = Hikl + Hike 
m m 

Clearly, 

and it follows from (3.51 that 

W‘kl (x. Y, r/c,) = 0 

s 
s 
H,k(Y.X(t(n(y))ds(y)=pb,kHs-(x)H(I)--p~ 

Using (4.51, (4.6) and (4.10), we obtain 

(5.2) 

(5.3) 

(5.4) 

it follows that the singularity of the tensor wtk at r= 0. is only logarithmic. Accordingly, 
Hik has a singularity of type ilr. 

Consider formula (2.9). Liik* is a regular generalized function, and we may therefore 
write all the convolutions as integrals: 

0 s 
‘i, (X. Y, r) Pk (Y. f - 7) ds (Y) + 2 @vi, (X, y, T) n,(y) + 

Pj (Y) ‘f, fxv Y* 7)) Urn o’.‘--T)ds(u) +&j dT @‘Sk (xe Y. T) nk (y) x 

u,,, (Y. t - 7) ds (y) 

where all the integrals exist; they may be written differently, e.g., 

t 

‘i, (X9 Y. T) Pk (y. t - T) ds (y) = (5.6) 
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utkj (xv Y, 7) pk (Y. t -T) dr 

1 

In order to differentiate under the integral sign, we introduce regularization at the 
front: 

15.7) 

The integrands in the second and third integrals have removable singularities at the 
fronts r= cr%, thanks to the equality 

lim 
urn (y. t - ?I - urn (y, t -r/Q 

= 
r--'+a j/t/ 

Ck 
1 du(Y,t-r/ck-o) 

_- 
& lim 

ckT--r 

Ck +;+I0 Ir^--- 
-=o 
CrT+r 

which holds for any P. On the boundary of the sets S," (at r= C& they vanish (this is 
important if S,'+S, for then the endpoints of the interval of integration depend on x). 
The integrands in the fourth and fifth integrals vanish at the boundary of St" because of 
(5.2). All the integrands are differentiable with respect to x. Accordingly, it is legitimate 
to differentiate within the integral. Collecting like terms and using (2.6), (5.4), we 
obtain 

The first integral exists for any x, the second, for rES. 
Note that formula (5.9) may be derived from the formal integral equality (2.8) if the 

integrands are regularized at the front. 
Formulae (5.3) and (5.9) have been developed for generalized functions, but both sides 

involve regular generalized functions. It is known 131 that they are identical as real-valued 
functions in the region of continuity. Thus (5.3) and (5.9) hold in the conventional sense 
too. To prove that they are valid on the surface of the discontinuity S, one must let x-+S, 
as is normally done in static problems 14, 6/. In the case of smooth Lyapunov surfaces 
formula (5.9) yields singular boundary integral equations for the solution of the boundary- 
value problems of elasticity theory. We shall not dwell on the proof here. 

Let us assume now that the initial data are not zero. Since q, f has a singularity 

(r - c/t)-"*, the corresponding integral in (2.8) does not exist, so that this formula is useless. 
We make use instead of (2.9). Split the tensor fY+k as given in (4.10) into two: UJ describes 
the motion between the fronts and Usk’ the motion upstream of the wave front: 
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We define the tensors 

and evaluate them using the equalities 

The results are 

I.e., DifL= D~i"(e) and these tensors are independent of t. Consider the expansions 

Define the vectors 
assuming regularization 

b&(x) = u fie w Hs- (x)9 l/lj = IY : II x - Y II < cjw 

zj (x, e, q - x + qt. We can rewrite the last equality differently, 
of the second type at the front: 

(5.10) 

Jjubtx, Y,~)~~~(zj)du(Y) 

t 

To continue, it is convenient to transform this integral to polar coordinates with origin at 
x and integrate with respect to P: 

UC (I, y,t)(~& (Y) - &, b,))duW -I- 

We have here cancelled out like terms obtained in the differentiation of Us: 
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(on the assumption that u~o,,n=aa&&,, exists). All the integrals in (5.11) exist. 
As a result, we can write formula (2.9) in the following integral form: 

If x=&s, this formula gives singular boundary integral equations for solving the 
boundary-value problems of unsteady-state elasticity theory with arbitrary boundary and 
initial conditions. Based on the approach outlined here, one can state the necessary con- 
ditions that the boundary and initial conditions must satisfy. The sufficient conditions 
are theircontinuity and the continuity of aukolat,. 

Iler=l 
t 

s d dr Uij (x, y, T) Cj (y, t - 2) du (y) 
0 - 

1. 
2. 

3. 
4. 
5. 

6. 

The analogue of (5.9) for the case Iv=3 was developed by N.M. Khutoryanskii /6/. 
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